

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart B, Class A

ANSI C63.4: 2014

Report No.: FDBDBO-WTW-P23050006

Product: Expandable Fanless Embedded Workstation

Brand: Vecow

Model No.: ECX-3200

Received Date: 2023/5/2

Test Date: 2023/5/4 ~ 2023/5/6

Issued Date: 2023/5/23

Applicant: Vecow Co., Ltd.

Address: 3F., No.10, Jiankang Rd., Zhonghe Dist., New Taipei City 23586, Taiwan **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan **Test Location:** No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration /

Designation Number: 418586 / TW1078

Approved by: , Date: 2023/5/23

Jim Hsiang / Associate Technical Manager

This test report consists of 28 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Albee Chu / Senior Specialist

Table of Contents

Rele	ase Control Record	3
1	Certificate	4
2	Summary of Test Results	5
2.1 2.2		
3	General Information	6
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Primary Clock Frequencies of Internal Source	6 6 8
4	Test Instruments	10
4.1 4.2 4.3	2 Radiated Emissions up to 1 GHz	11
5	Limits of Test Items	13
5.1 5.2 5.3	2 Radiated Emissions up to 1 GHz	13
6	Test Arrangements	14
6.1 6.2 6.3	2 Radiated Emissions up to 1 GHz	15
7	Test Results of Test Item	17
7.1 7.2 7.3	2 Radiated Emissions up to 1 GHz	21
8	Pictures of Test Arrangements	25
8.1 8.2 8.3	2 Radiated Emissions up to 1 GHz	26
9	Information of the Testing Laboratories	28

Release Control Record

Issue No.	Description	Date Issued	
FDBDBO-WTW-P23050006	Original release.	2023/5/23	

Report No.: FDBDBO-WTW-P23050006 Page No. 3 / 28 Report Format Version: 7.1.1 Reference No.: BDBO-WTW-P23050006

1 Certificate

Product: Expandable Fanless Embedded Workstation

Brand: Vecow

Test Model: ECX-3200

Sample Status: Engineering sample

Applicant: Vecow Co., Ltd.

Test Date: 2023/5/4 ~ 2023/5/6

Standard: 47 CFR FCC Part 15, Subpart B, Class A

ANSI C63.4: 2014

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

2 Summary of Test Results

The test items that the EUT need to perform in accordance with its interfaces, evaluated functions, are as follows:

Standard / Clause	Clause Test Item		Remark
FCC Part 15.107	Conducted Emissions from Power Ports	Pass	Minimum passing Class A margin is -23.05 dB at 1.60798 MHz
FCC Part 15.109	Radiated Emissions up to 1 GHz	Pagg	Minimum passing Class A margin is -0.76 dB at 662.51 MHz
FCC Part 15.109	Radiated Emissions above 1 GHz	Pass	Minimum passing Class A margin is -9.41 dB at 1539.98 MHz

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)	Maximum allowable uncertainty (±)	
Conducted Emissions from Power Ports	9 kHz ~ 30 MHz	3.00 dB	3.4 dB (<i>U</i> cispr)	
Radiated Emissions up to 1 GHz	30 MHz ~ 1 GHz	3m : 5.72 dB 10m : 4.38 dB	6.3 dB (<i>U</i> _{cispr})	
	1 GHz ~ 6 GHz	4.42 dB	5.2 dB (<i>U</i> cispr)	
Radiated Emissions above 1 GHz	6 GHz ~ 18 GHz	4.56 dB	5.5 dB (<i>U</i> cispr)	
	18 GHz ~ 40 GHz	4.58 dB	-	

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

Report Format Version: 7.1.1

3 General Information

3.1 Description of EUT

Product	Expandable Fanless Embedded Workstation
Brand	Vecow
Test Model	ECX-3200
Series Model	ECX-3XXXXXXXXXXXXXXX ("X" can be 0-9, A-Z or blank for marketing purpose)
Sample Status	Engineering sample
Operating Software	WIN10
Power Supply Rating	DC from Adapter
Accessory Device	Adapter
Data Cable Supplied	N/A

Note:

The EUT uses following accessories.

AC Adapter							
Brand	Model	Specification					
		AC Input: 100~240V, 2.34A 50-60Hz					
LITEON	PA-1181-28E	DC Output: 24V, 7.5A 180W					
		DC Output Cable: 1.5m, with 2 cores.					

3.2 Primary Clock Frequencies of Internal Source

The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 1.9GHz, provided by Vecow Co., Ltd., for detailed internal source, please refer to the manufacturer's specifications.

3.3 Features of EUT

The tests reported herein were performed according to the method specified by Vecow Co., Ltd., for detailed feature description, please refer to the manufacturer's specifications or user's manual.

Please refer to appendix of the report if the applicant has provided additional descriptions of the EUT.

The EUT configured with the following key components:

Component	Specification					
CPU	J Intel [®] Core [™] 12 th Gen Processor					
RAM	SMART DDR5 4800 8GB non-ECC SODIMM x2					
SSD	SSD Innodisk 2.5" SATA SSD 3ME4 128GB					

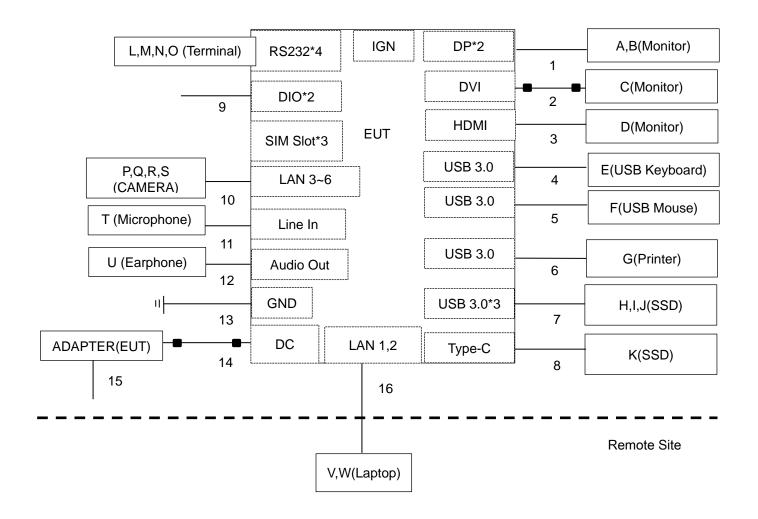
Operating Modes of EUT and Determination of Worst Case Operating Mode 3.4

The EUT has been pre-tested under following test modes.

	Test Condition					
Mode	Radiated Emissions up to 1 GHz					
1	Full system,DVI+HDMI:1920*1080,60Hz,Display:3480*2160,60Hz,LAN 1:1Gbps link,LAN 2:1Gbps link, LAN 3~LAN 6 with POE CCD					
Note: Th	Note: There are both AC 230V/50Hz and AC 120V/60Hz to be pre-tested then AC 120V/60Hz has the highest emission					

Test modes are presented in the report as helow

Test mou	lest modes are presented in the report as below.						
	Test Condition						
Mode	Conducted Emissions from Power Ports						
А	Full system,DVI+HDMI:1920*1080,60Hz,Display:3480*2160,60Hz,LAN 1:1Gbps link,LAN 2:1Gbps link, LAN 3~LAN 6 with POE CCD + Input Power(120 Vac, 60 Hz)						
В	Full system,DVI+HDMI:1920*1080,60Hz,Display:3480*2160,60Hz,LAN 1:1Gbps link,LAN 2:1Gbps link, LAN 3~LAN 6 with POE CCD + Input Power(240 Vac, 60 Hz)						
Mode	Radiated Emissions up to 1 GHz						
А	Full system,DVI+HDMI:1920*1080,60Hz,Display:3480*2160,60Hz,LAN 1:1Gbps link,LAN 2:1Gbps link, LAN 3~LAN 6 with POE CCD + Input Power(120 Vac, 60 Hz)						
Mode	Radiated Emissions above 1 GHz						
А	Full system,DVI+HDMI:1920*1080,60Hz,Display:3480*2160,60Hz,LAN 1:1Gbps link,LAN 2:1Gbps link, LAN 3~LAN 6 with POE CCD + Input Power(120 Vac, 60 Hz)						


Page No. 7 / 28 Report Format Version: 7.1.1

3.5 Test Program Used and Operation Descriptions

- a. Turned on the power of all equipment.
- b. EUT ran a test program (BurnIntest) to enable all functions.
- c. EUT read and wrote messages to/ from internal storage drives, and external storage drives.
- d. EUT sent "H" messages to monitor. Then the displayed messages on their screens simultaneously.
- e. EUT sent and received messages to/ from Laptop (kept in a remote area) via STP cable.
- f. EUT received message from POE camera via STP cable.
- g. EUT sent "1kHz audio" signal to earphone.

3.6 Connection Diagram of EUT and Peripheral Devices

3.7 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Monitor	ASUS	PA279CV	M7LMTF235958	DoC	Provided by Lab
В	Monitor	ASUS	PA279CV	M7LMTF236012	DoC	Provided by Lab
С	Monitor	DELL	U2410	CN082WXD728720CC0KCL	DoC	Provided by Lab
D	Monitor	DELL	U2410	CN082WXD728720CC10NL	DoC	Provided by Lab
Е	USB Keyboard	Dell	KB216t	CN-0W33XP-LO300-7CL-191E	N/A	Provided by Lab
F	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC00-77B-007R	N/A	Provided by Lab
G	Printer	HP	HP Officejet Pro 251dW	N/A	B94SDGOB1191	Provided by Lab
Н	SSD	Crucial	CT500X8SSD9	1941E323D093	N/A	Provided by Lab
Ι	SSD	Crucial	CT500X8SSD9	1941E323D095	N/A	Provided by Lab
J	SSD	Crucial	CT500X8SSD9	1941E3201117	N/A	Provided by Lab
K	SSD	Crucial	CT500X8SSD9	1941E320114D	N/A	Provided by Lab
L	Terminal	N/A	N/A	N/A	N/A	Supplied by applicant
М	Terminal	N/A	N/A	N/A	N/A	Supplied by applicant
Ν	Terminal	N/A	N/A	N/A	N/A	Supplied by applicant
0	Terminal	N/A	N/A	N/A	N/A	Supplied by applicant
Р	CAMARA	3MP	A301RZ-0309P	T42211285	N/A	Supplied by applicant
Q	CAMARA	3MP	A301RZ-0309P	T42211278	N/A	Supplied by applicant
R	CAMARA	3MP	A301RZ-0309P	T42211283	N/A	Supplied by applicant
S	CAMARA	3MP	A301RZ-0309P	T42211277 N/A		Supplied by applicant
Т	Microphone	E-books	E-EPB099	N/A N/A		Provided by Lab
U	Earphonne	PHILIPS	SBC HL145	N/A N/A		Provided by Lab
٧	Laptop	LENOVO	T480	PF1EK03U N/A		Provided by Lab
W	Laptop	LENOVO	T480	PF1EZSAW N/A		Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DP cable	2	1.8	Yes	0	Provided by Lab
2	DVI cable	1	1.8	Yes	2	Provided by Lab
3	HDMI cable	1 2		Yes	0	Provided by Lab, HDMI 2.0 (Brand: Amber, Model: HDMI-AA120)
4	USB cable	1	1.8	Yes	0	Provided by Lab
5	USB cable	1	1.8	Yes	0	Provided by Lab
6	USB cable	1	1.8	Yes	0	Provided by Lab
7	USB Type A to C cable	3	1	Yes	0	Provided by Lab
8	Type C to C cable	1	1	Yes	0	Provided by Lab
9	Data cable	5	0.3	No	0	Supplied by applicant
10	RJ45 (Cat. 5e) cable	4	1.5	Yes	0	Provided by Lab
11	Audio (3.5") cable	1	2	No	0	Provided by Lab
12	Audio (3.5") cable	1	1.2	No	0	Provided by Lab
13	GND (PE) cable	1	1.8	No	0	Provided by Lab
14	DC power cable	1	1.5	No	2	Accessory of EUT
15	AC power(3pin) cable	1	1.8	No	0	Provided by Lab
16	RJ45 (Cat. 5e) cable	2	10	Yes	0	Provided by Lab

Test Instruments 4

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 **Conducted Emissions from Power Ports**

Model No.	Serial No.	Calibrated Date	Calibrated Until
0000540	E1-011285	2022/9/19	2023/9/18
0900510	E1-011286	2022/9/19	2023/9/18
0900510	E1-01-305	2023/2/13	2024/2/12
STI02-2200-10	NO.3	2022/10/21	2023/10/20
CDNE-M2	00097	2022/6/1	2023/5/31
CDNE-M3	00091	2022/6/1	2023/5/31
CDN A201A	44601	2022/12/14	2023/12/13
F0110.70	100219	2022/8/2	2023/8/1
ESH3-Zb	844950/018	2022/8/2	2023/8/1
TK9420	00982	2022/12/14	2023/12/13
D-65396	017	2022/9/8	2023/9/7
2005/0	9204-1964	2022/6/17	2023/6/16
3825/2	9504-2359	2022/8/2	2023/8/1
	101195	2022/8/1	2023/7/31
ENV216	101196	2022/5/24	2023/5/23
	101197	2022/7/5	2023/7/4
NINII K 9121	8121-00759	2022/8/18	2023/8/17
ININLIX 0121	8121-731	2022/5/26	2023/5/25
NNLK8129	8129229	2022/6/8	2023/6/7
5D-FB	Cable-CO3-01	2022/9/14	2023/9/13
Cond_V7.3.7.4	N/A	N/A	N/A
ESR3	102413	2023/2/7	2024/2/6
	0900510 0900510 STI02-2200-10 CDNE-M2 CDNE-M3 CDN A201A ESH3-Z6 TK9420 D-65396 3825/2 ENV216 NNLK 8121 NNLK8129 5D-FB Cond_V7.3.7.4	0900510 E1-011285 E1-011286 E1-011286 0900510 E1-01-305 STI02-2200-10 NO.3 CDNE-M2 00097 CDNE-M3 00091 CDN A201A 44601 ESH3-Z6 100219 844950/018 844950/018 TK9420 00982 D-65396 017 3825/2 9204-1964 9504-2359 101195 ENV216 101196 101197 8121-00759 8121-731 8121-731 NNLK 8129 8129229 5D-FB Cable-CO3-01 Cond_V7.3.7.4 N/A	Model No. Date

Notes:

- The test was performed in Linkou Conduction 3.
 The VCCI Site Registration No. C-10274.
- 3. Tested Date: 2023/5/5

Radiated Emissions up to 1 GHz 4.2

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
ADT. Tower	AT100	0205	N/A	N/A
ADT. Turn Table	TT100	0205	N/A	N/A
Attenuator Mini-Circuits	UNAT-5+	PAD-ST2-01	2022/10/21	2023/10/20
Bi-log Broadband Antenna Schwarzbeck	VULB9168	9168-303	2022/10/25	2023/10/24
Coupling/Dcoupling Network	CDNE-M2	00097	2022/6/1	2023/5/31
Schwarzbeck	CDNE-M3	00091	2022/6/1	2023/5/31
Preamplifier Agilent	8447D	2944A11062	2023/2/15	2024/2/14
Pre_Amplifier EMCI	EMC9135	980711	2023/3/12	2024/3/11
Pre_Amplifier HP	8447D	2944A08313	2023/2/15	2024/2/14
RF Coaxial Cable Pacific	8D-FB	Cable-ST2-01	2022/10/21	2023/10/20
Software BVADT	Radiated_V7.6.15.9.5	N/A	N/A	N/A
TEST RECEIVER	ESCS 30	100276	2023/4/20	2024/4/19
R&S	E303 30	100292	2022/8/30	2023/8/29

Notes:

- 1. The test was performed in Linkou Open Site2 , The test site validated date: 2022/7/16 (NSA) 2. The VCCI Site Registration No. R-10237.
- 3. Tested Date: 2023/5/4

Radiated Emissions above 1 GHz 4.3

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Attenuator	BW-K3-2W44+	PAD-CH7-03	2022/7/7	2023/7/6
Mini-Circuits	BW-N4W5+	PAD-CH10-02	2022/7/7	2023/7/6
Band Pass Filter MICRO-TRONICS	BRM17690	005	2022/5/26	2023/5/25
Fix tool for Boresight antenna tower BV	BAF-01	9	N/A	N/A
Horn Antenna EMCO	3115	6714	2022/11/13	2023/11/12
Horn Antenna ETS-Lindgren	3117-PA	00215857	2023/2/3	2024/2/2
Horn Antenna Schwarzbeck	BBHA 9170	212	2022/10/20	2023/10/19
Notch Filter MICRO-TRONICS	BRC50703-01	010	2022/5/26	2023/5/25
Pre-amplifier HP	8449B	3008A01292	2023/2/16	2024/2/15
Pre_Amplifier	EMC0126545	980076	2023/2/16	2024/2/15
EMCI	EMC184045B	980235	2023/2/16	2024/2/15
RF Coaxial Cable EM	EM102-KMKM-3.5	EM102-KMKM-3.5-02	2022/9/27	2023/9/26
RF Coaxial Cable WOKEN	WC01	Cable-CH10-03	2022/9/27	2023/9/26
Software BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum	NOOOD	MY60110438	2022/12/6	2023/12/5
Keysight	N9020B	MY60112260	2022/5/21	2023/5/20
Test Receiver Agilent	N9038A	MY51210137	2022/6/9	2023/6/8
Turn Table & Tower Max Full	MF7802	MF780208216	N/A	N/A

Notes:

- The test was performed in Linkou 966 Chamber 3 (CH 10).
 The VCCI Site Registration No. G-10427.
 Tested Date: 2023/5/6

5 Limits of Test Items

5.1 Conducted Emissions from Power Ports

Fraguency (MHz)	Class A	(dBuV)	Class B (dBuV)	
Frequency (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Notes: 1. The lower limit shall apply at the transition frequencies.

5.2 Radiated Emissions up to 1 GHz

Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following:

Radiated Emissions Limits at 10 meters (dBµV/m)						
Frequencies (MHz)	FCC 15B, Class A	FCC 15B, Class B	CISPR 22, Class A	CISPR 22, Class B		
30-88	39.1	29.5				
88-216	43.5	33.1	40	30		
216-230	46.4	25.6				
230-960	46.4	35.6	47	27		
960-1000	49.5	43.5	47	37		

Radiated Emissions Limits at 3 meters (dBµV/m)						
Frequencies (MHz)	FCC 15B, Class A	FCC 15B, Class B	CISPR 22, Class A	CISPR 22, Class B		
30-88	49.5	40.0				
88-216	54.0	43.5	50.5	40.5		
216-230	56.9	46.0				
230-960	56.9	40.0	57.5	47.5		
960-1000	60.0	54.0	37.5	47.5		

Notes: 1. The lower limit shall apply at the transition frequencies.

5.3 Radiated Emissions above 1 GHz

Frequency Range (For unintentional radiators)

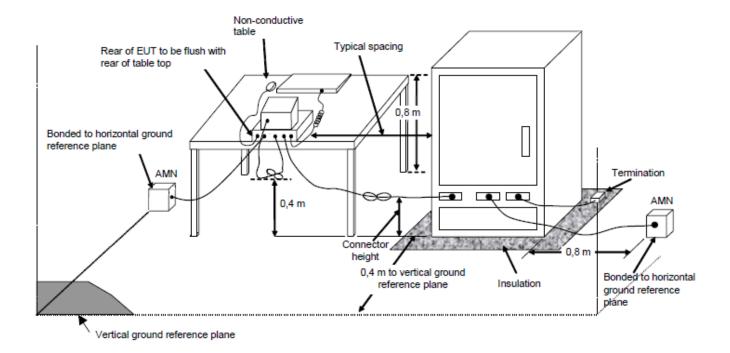
Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40GHz, whichever is lower

Radiated Emissions Limits at 3 meters (dBµV/m)					
Frequency range Class A Class B					
Above 1GHz	Avg: 60 Peak: 80	Avg: 54 Peak: 74			

Notes: 1. These limit levels apply for a measurement distance of 3 m. If using a different measurement distance, the measured levels shall be extrapolated to the 3 m limit distance using a factor of 20 dB per decade of distance. The measurement distance shall place the measurement antenna in the far field of the ITE or digital apparatus under test.

Report No.: FDBDBO-WTW-P23050006 Page No. 13 / 28 Report Format Version: 7.1.1 Reference No.: BDBO-WTW-P23050006

^{2.} The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

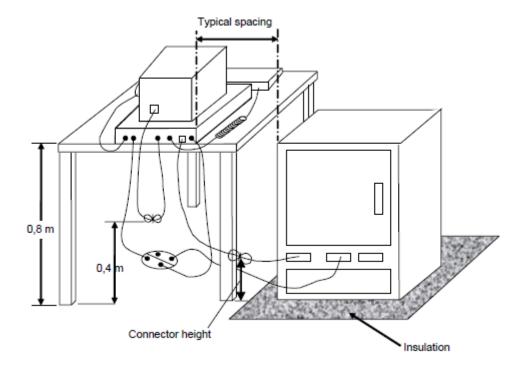


6 Test Arrangements

6.1 Conducted Emissions from Power Ports

- a. For the table-top EUT is placed on a 0.8 meter insulation table; for the floor standing EUT shall be insulated (by insulation of 12 mm) from the horizontal reference ground plane. The EUT is placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units are connected to the power mains through another LISN. They provide coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

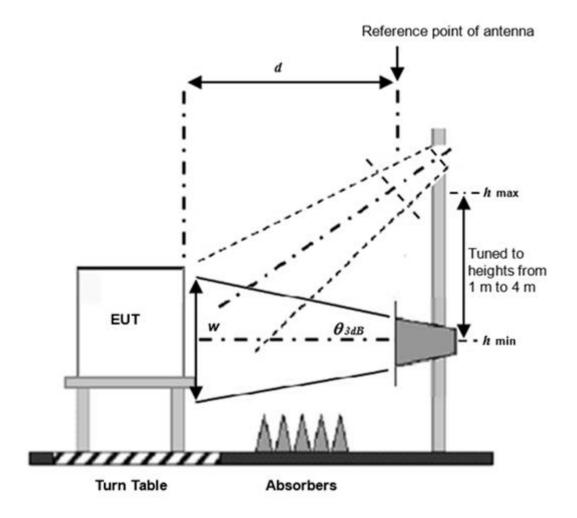

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

6.2 Radiated Emissions up to 1 GHz

- a. For the table-top EUT is placed on a 0.8 meter to the top of rotating table; for the floor standing EUT shall be insulated (by insulation of 12 mm) from the horizontal reference ground plane. The rotating table is rotated 360 degrees to determine the position of the highest radiation. If the equipment requires a dedicated ground connection, this shall be provided and bonded to the RGP.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency up to 1GHz.

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.


Page No. 15 / 28

6.3 Radiated Emissions above 1 GHz

- a. For the table-top EUT is placed on a 0.8 meter to the top of rotating table; for the floor standing EUT shall be insulated (by insulation of 12 mm) from the horizontal reference ground plane. The rotating table is rotated 360 degrees to determine the position of the highest radiation. If the equipment requires a dedicated ground connection, this shall be provided and bonded to the RGP.
- b. The EUT was set d = d = 3 meters for 1 GHz to 18 GHz and d = 1.5 meters for 18 GHz to 40 GHz away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Test Results of Test Item 7

7.1 **Conducted Emissions from Power Ports**

Mode A

Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Perry Yang		

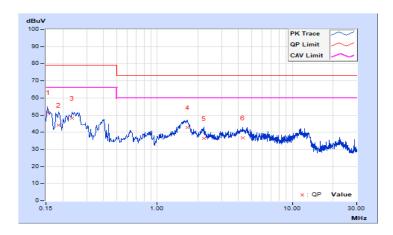
	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		g Value uV)		on Level uV)		mit suV)		gin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15396	9.65	38.45	31.53	48.10	41.18	79.00	66.00	-30.90	-24.82
2	0.21814	9.65	35.58	23.92	45.23	33.57	79.00	66.00	-33.77	-32.43
3	1.56404	9.68	32.90	26.79	42.58	36.47	73.00	60.00	-30.42	-23.53
4	2.23194	9.71	27.04	20.85	36.75	30.56	73.00	60.00	-36.25	-29.44
5	4.69220	9.76	26.27	20.24	36.03	30.00	73.00	60.00	-36.97	-30.00
6	13.29608	9.88	29.58	21.19	39.46	31.07	73.00	60.00	-33.54	-28.93

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Report No.: FDBDBO-WTW-P23050006 Page No. 17 / 28 Report Format Version: 7.1.1

Reference No.: BDBO-WTW-P23050006



			VERITAS
Fraguency Bongs	150 kHz ~ 30 MHz	Detector Function &	Quasi-Peak (QP) /
Frequency Range	150 KH2 ~ 50 WH2	Resolution Bandwidth	Average (AV), 9kHz
Input Bower	120 Vac, 60 Hz	Environmental	25°C, 64% RH
Input Power	120 Vac, 60 Hz	Conditions	25 C, 04% KH
Tested by	Perry Yang		

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value uV)		n Level uV)		nit uV)	Mar (d	gin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15525	9.65	41.79	32.50	51.44	42.15	79.00	66.00	-27.56	-23.85
2	0.18608	9.65	34.47	12.65	44.12	22.30	79.00	66.00	-34.88	-43.70
3	0.23406	9.65	38.51	24.67	48.16	34.32	79.00	66.00	-30.84	-31.68
4	1.66800	9.70	33.07	26.54	42.77	36.24	73.00	60.00	-30.23	-23.76
5	2.20792	9.72	26.64	19.85	36.36	29.57	73.00	60.00	-36.64	-30.43
6	4.27210	9.77	27.09	21.08	36.86	30.85	73.00	60.00	-36.14	-29.15

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Report No.: FDBDBO-WTW-P23050006 Reference No.: BDBO-WTW-P23050006 Page No. 18 / 28

Report Format Version: 7.1.1

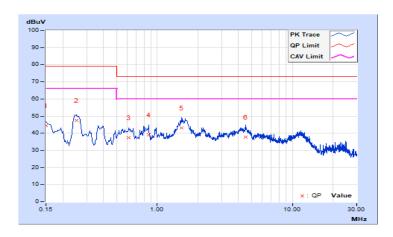
Mode B

Frequency Range	1150 KH7 ~ 30 MH7		Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	240 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Perry Yang		

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		g Value uV)		n Level uV)		mit uV)	Maı (d	rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15404	9.65	38.71	30.78	48.36	40.43	79.00	66.00	-30.64	-25.57
2	0.24812	9.65	35.43	26.47	45.08	36.12	79.00	66.00	-33.92	-29.88
3	0.84796	9.66	28.70	19.28	38.36	28.94	73.00	60.00	-34.64	-31.06
4	1.60798	9.68	34.73	27.27	44.41	36.95	73.00	60.00	-28.59	-23.05
5	2.16800	9.70	27.79	20.79	37.49	30.49	73.00	60.00	-35.51	-29.51
6	4.73208	9.76	26.40	20.48	36.16	30.24	73.00	60.00	-36.84	-29.76

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



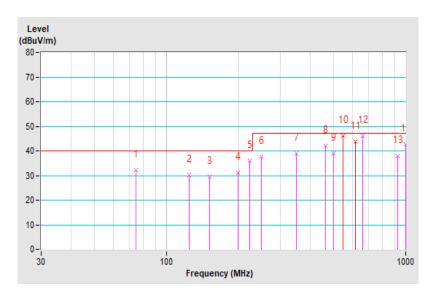
			VER	RITAS
Fraguency Banga	150 kHz ~ 30 MHz	Detector Function &	Quasi-Peak (QP) /	
Frequency Range	150 KHZ ~ 50 MHZ	Resolution Bandwidth	Average (AV), 9kHz	
Innut Power	240 \/00 60 Hz	Environmental 25°C, 75% RH		
Input Power	240 Vac, 60 Hz	Conditions	25 C, 75% KH	
Tested by	Perry Yang			

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		g Value uV)		n Level uV)		nit uV)		gin B)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15006	9.65	34.86	27.88	44.51	37.53	79.00	66.00	-34.49	-28.47	
2	0.25336	9.65	37.78	27.68	47.43	37.33	79.00	66.00	-31.57	-28.67	
3	0.61576	9.66	27.73	16.83	37.39	26.49	73.00	60.00	-35.61	-33.51	
4	0.86464	9.67	29.47	18.27	39.14	27.94	73.00	60.00	-33.86	-32.06	
5	1.52001	9.69	33.57	26.58	43.26	36.27	73.00	60.00	-29.74	-23.73	
6	4.49606	9.77	28.01	21.70	37.78	31.47	73.00	60.00	-35.22	-28.53	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

7.2 Radiated Emissions up to 1 GHz

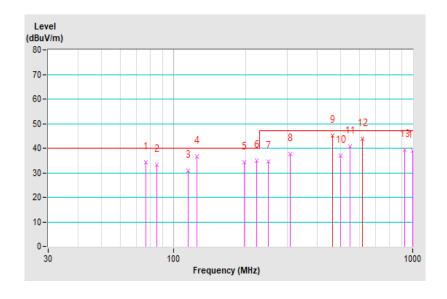

Mode A

Frequency Range	30 MHz ~ 1 GHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP), 120 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	26°C, 68% RH
Tested By	Paul Chen		

		Antenna	a Polarity & 7	Test Distance	e : Horizonta	l at 10 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	74.52	32.31 QP	40.00	-7.69	4.00 H	207	44.10	-11.79
2	125.00	30.28 QP	40.00	-9.72	4.00 H	149	40.11	-9.83
3	151.60	29.37 QP	40.00	-10.63	4.00 H	314	37.25	-7.88
4	199.84	31.32 QP	40.00	-8.68	4.00 H	257	42.07	-10.75
5	222.40	35.96 QP	40.00	-4.04	4.00 H	299	46.39	-10.43
6	249.98	37.72 QP	47.00	-9.28	3.74 H	271	45.82	-8.10
7	350.14	38.92 QP	47.00	-8.08	3.32 H	82	43.93	-5.01
8	461.95	42.20 QP	47.00	-4.80	2.07 H	19	44.37	-2.17
9	500.00	39.02 QP	47.00	-7.98	1.96 H	327	40.71	-1.69
10	547.54	46.23 QP	47.00	-0.77	1.87 H	180	46.91	-0.68
11	615.99	43.79 QP	47.00	-3.21	1.47 H	81	42.25	1.54
12	662.51	46.24 QP	47.00	-0.76	1.33 H	59	43.35	2.89
13	923.99	38.06 QP	47.00	-8.94	1.00 H	274	29.59	8.47
14	999.99	42.60 QP	47.00	-4.40	1.00 H	171	33.11	9.49

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



			VERITAS	
Fraguency Bongo	30 MHz ~ 1 GHz	Detector Function &	Quasi-Peak (QP), 120 kHz	
Frequency Range	30 MHZ ~ 1 GHZ	Resolution Bandwidth	Quasi-Peak (QP), 120 kHz	
Innut Dower	120 Vac 60 Hz	Environmental	26°C 690/ DH	
Input Power	120 Vac, 60 Hz	Conditions	26°C, 68% RH	
Tested By	Paul Chen			

		Anten	na Polarity &	Test Distan	ce : Vertical	at 10 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	76.99	34.16 QP	40.00	-5.84	1.64 V	142	46.70	-12.54
2	85.55	33.15 QP	40.00	-6.85	1.78 V	67	47.37	-14.22
3	115.49	30.99 QP	40.00	-9.01	1.00 V	210	41.76	-10.77
4	125.01	36.75 QP	40.00	-3.25	1.00 V	190	46.57	-9.82
5	197.76	34.18 QP	40.00	-5.82	1.00 V	333	44.94	-10.76
6	222.48	34.86 QP	40.00	-5.14	1.00 V	20	45.29	-10.43
7	250.00	34.72 QP	47.00	-12.28	1.00 V	285	42.82	-8.10
8	308.14	37.60 QP	47.00	-9.40	1.00 V	79	43.39	-5.79
9	462.00	45.22 QP	47.00	-1.78	1.00 V	346	47.39	-2.17
10	500.00	36.98 QP	47.00	-10.02	1.00 V	305	38.67	-1.69
11	547.51	40.66 QP	47.00	-6.34	3.41 V	110	41.34	-0.68
12	616.00	43.57 QP	47.00	-3.43	3.31 V	124	42.03	1.54
13	923.95	39.39 QP	47.00	-7.61	2.29 V	284	30.92	8.47
14	999.99	39.01 QP	47.00	-7.99	2.19 V	100	29.52	9.49

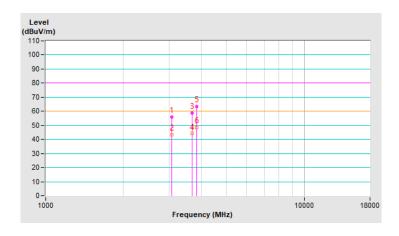
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Report No.: FDBDBO-WTW-P23050006 Reference No.: BDBO-WTW-P23050006 Page No. 22 / 28

Report Format Version: 7.1.1

7.3 Radiated Emissions above 1 GHz


Mode A

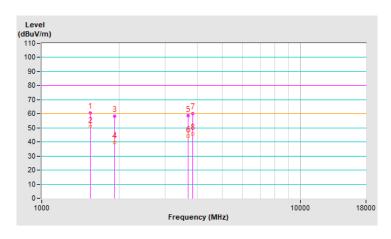
Frequency Range	1 GHz ~ 9.5 GHz	Detector Function & Resolution Bandwidth	Peak (PK) / Average (AV), 1MHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	20°C, 70% RH
Tested By	Bob Lin		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	3079.98	56.07 PK	80.00	-23.93	2.27 H	353	53.61	2.46		
2	3079.98	43.50 AV	60.00	-16.50	2.27 H	353	41.04	2.46		
3	3695.98	58.79 PK	80.00	-21.21	2.44 H	55	53.83	4.96		
4	3695.98	44.06 AV	60.00	-15.94	2.44 H	55	39.10	4.96		
5	3849.98	63.35 PK	80.00	-16.65	2.19 H	134	57.91	5.44		
6	3849.98	48.37 AV	60.00	-11.63	2.19 H	134	42.93	5.44		

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Page No. 23 / 28



			VERITAS	
Fraguency Bongo	1 GHz ~ 9.5 GHz	Detector Function &	Peak (PK) / Average (AV), 1MHz	
Frequency Range	1 GHZ ~ 9.5 GHZ	Resolution Bandwidth	reak (PK) / Average (AV), TWIDZ	
Innut Dower	120 Voc. 60 Hz	Environmental	20°C 700/ DU	
Input Power	120 Vac, 60 Hz	Conditions	20°C, 70% RH	
Tested By	Bob Lin			

		Anten	na Polarity 8	k Test Distar	ce : Vertical	at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1539.98	60.82 PK	80.00	-19.18	1.97 V	132	63.96	-3.14
2	1539.98	50.59 AV	60.00	-9.41	1.97 V	132	53.73	-3.14
3	1917.15	58.24 PK	80.00	-21.76	1.00 V	258	60.04	-1.80
4	1917.15	39.73 AV	60.00	-20.27	1.00 V	258	41.53	-1.80
5	3695.93	58.59 PK	80.00	-21.41	2.41 V	219	53.63	4.96
6	3695.93	44.15 AV	60.00	-15.85	2.41 V	219	39.19	4.96
7	3849.96	60.21 PK	80.00	-19.79	2.50 V	312	54.77	5.44
8	3849.96	45.72 AV	60.00	-14.28	2.50 V	312	40.28	5.44

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

8 Pictures of Test Arrangements

8.1 Conducted Emissions from Power Ports

Mode A and B

8.2 Radiated Emissions up to 1 GHz

Mode A

8.3 Radiated Emissions above 1 GHz

Mode A

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@bureauveritas.com.
Web Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: FDBDBO-WTW-P23050006 Reference No.: BDBO-WTW-P23050006 Page No. 28 / 28

Report Format Version: 7.1.1